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Interrelation Between Safety Factors and Reliability: Part 1

Random Actual Stress & Deterministic Yield Stress

Isaac Elishakoff

Department of Mechanical Engineering

Florida Atlantic University

Boca Raton, FL33431

"The factor of safety was a useful invention of the engineer a long time

ago that served him well. But it now quite outlived its usefulness and

has become a serious threat to real progress in design"

D. Faulkner

"Current structural safety, design practices are considered inadequate

for future launch vehicles and spacecraft."

V. Verderaime

"lDetermmistic safety measures] ignore much information which may

be available about uncertainties in structural strengths or applied

loads."

R. Melchers

1. Introduction

Attempts at probabilistic interpretation of the deterministic safety factor have

been made in the literature despite the fact that the "spirits" of these two approaches are

entirely different. Before discussing them, it is instructive to quote some representative

excerpts from popular textbooks concerning its definition:

(a) "To allow for accidental overloading of the structure, as well as for possible

inaccuracies in the construction and possible unknown variables in the analysis of

NASA/CR--2001-211309 1



(b)

(c)

(d)

(e)

(0

the structure, a factor of safety is normally provided by choosing an allowable

stress (or working stress) below the proportional limit".

"Although not commonly used, perhaps a better term for this ratio is factor of

ignorance".

"The need for the safety margin is apparent for many reasons: stress itself is

seldom uniform; materials lack the homogeneous properties theoretically assigned

to the abnormal loads might occur; manufacturing processes often impart

dangerous stresses within the component. These and other factors make it

necessary to select working stresses substantially below those known to cause

failure".

"A factor of safety is used in the design of structures to allow for (1) uncertainty

of loading. (2) the statistical variation of material strengths, (3) inaccuracies in

geometry and theory, and (4) the grave consequences of failure of some

structures".

"Factor of safety (N_s), where N_ > 1, is the ratio of material strength (usually

ultimate strength or yield point) to actual or calculated stress. Alternatively, factor

of safety can be defined as the ratio of load at failure to actual or calculated load.

The factor of safety provides a margin of safety to account for uncetainties such

as errors in predicting loading of a part, variations in material properties, and

differences between the ideal model and actual material behavior" (Wilson,

1997).

"Choosing the safety factor is often a confusing proposition for the beginning

designer. The safety factor can be thought of as a measure of the designer's
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uncertainty in the analytical models, failure theories, and material property data

used, and should be chosen accordingly ... Nothing is absolute in engineering any

more than in any other endeavor. The strength of materials may vary from sample

to sample. The actual size of different examples of the "same" parts made in

quantity may vary due to manufacturing tolerance. As a result, we should take the

statistical distributuions into account in our calculations." (Norton, 2000).

Freudenthal remarks [20] "... it seems absurd to strive for more and more

refinement of methods of stress-analysis if in order to determine the dimensions of the

structural elements, its results are subsequently compared with so called working stress,

derived in a rather crude manner by dividing the values of somewhat dubious material

parameters obtained in conventional materials tests by still more dubious empirical

numbers called safety factors".

Indeed, it appears to the present writer that in addition to its role as a "safety"

parameter for the structure, it is intended as "personal insurance" factor of sorts for the
, -

design companies.

2. Four Different Probabilistic Definitions of a Safety Factor

Consider an element subjected to a stress o:. Let it be a random variable, denoted

by capital letter E, whereas a lower case notation describes the possible values cr that the

random variable E may take. The strength characteristics say the yield stress may also be

designated by upper case notation Ey, with Crybeing the possible values Y,ymay take. The

various possible definitions of the safety factor s are
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E(Z,,)
s, - (1)

E(Z)

which is referred to as the central safety; E(Ey) denotes the mathematical expectation of

2y, while E(Z) is associated with the mathematical expectation of Z.

On the other hand one can treat the ratio

Q = _E_' (2)
2;

as a random variable. Its mathematical expectation

could be also interpreted as a safety factor. The third possible definition of the safety

factor is

In specific cases some of the above safety factors may coincide. For example,

when the yield stress is random, but the stress is a deterministic quantity, i.e. takes a

single value cr with unity probability, we have

sl = s2 = s_ (5)

If stress is random, but yield stress is a deterministic quantity _y, then

s: = s 3 (6)

The fourth definition of the safety factor was proposed by Birger (1970). He

considered the probability distribution function of the random variable Q
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Fo(q)= Prob(_--< q]

Then he demands this function to equal some value p0:

F_(q) = Prob(_ ---y<- @=Po

(7)

(8)

The value of q - q0 that corresponds to the poth fractile of the distribution function FQ(q)

is declared as the safety factor. This implies, that ofpo = 0.01, and say q0 = 1, that in

about 99% of the realizations of the structure the deterministic safety factor will be not

less than 13.

We are asking ourselves the following question: Can we express the safety factors

by probabilistic characterization of the structural performance? The central idea of the

probabilistic design of structures is reliability, i.e. probability that the structure will

perform its mission adequately, as required. In our context the mission itself is defined

deterministically, namely we are interested in the event

X < Y.y (9)

i.e. that the actual stress is less than the yield stress.

Since both X and Xy may take values from a finite or infinite range of values, the

inequality (9) will not always take place. For some realizations of random variables X and

Ey the inequality may be satisfied, whereas for the other ones it may be violated.

Engineers are interested in the probability that the inequality (9) will hold. Such a

probability is called reliability, denoted by R

R = Pr ob(E _< Y,y) ( 1O)

Its complement
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PT = 1 -R = Prob(E >_Ey) (11)

is called the probability of failure. It is a probability that the stress will be equal to or will

exceed the yield stress. It is understandable that engineers want to achieve a very high

reliability, allowing, if at all, a extremely small probability of failure.

It appears, at the first glance, that the approaches, based on the deterministic

allocation of the safety factors, or that based on reliability design are totally

contradictory. We will pursue this subject in more detail. In this report and its companion

(report #2), we discuss particular cases, whereas at a later stage (in our report #3) we will

pursue the general case, in which both E and Ey will be treated as random variables.

3. Case 1: Stress Has an Uniform Probability Density, Strength

Is Deterministic

Let the stress E be a random variable with the uniform probability density

1 for crL < cr < crU
L(cr) = o-v - o-z (12)

O, otherwise

where trz is the lowest value that the stress may take, whereas try is the greatest value the

stress may assume. We treat the yield stress Ey to be a deterministic quantity, i.e. to take a

single value ay with unity probability. The probability distribution function

O"

= Prob(Z < or) = _fz(a)daF_ (o-) (13)

reads
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--

O, for cr < crL

O" -- O" L

O-U -- CyL

, for crL <__<_u

l, for G_; <_ (7

(14)

The reliability reads

R = Pr ob(E < Ey) = Pr ob(E < cry) (15)

or, in light of Eq. (13) we get

R = F_(oy)

In other words, the reliability equals the stress distribution function F_

yield stress (Fig. 1).

(16)

evaluated at the
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//

/
/

/
Fig. 1 Reliability equals the probability distribution function of the

actual stress evaluated at the level of yield stress
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Bearing in mind Eq. (14) we get

R ____

_0, ,for o_ < oL

O'y -- O" L

for o-L < o-y < o-u (17)
0'- U -- O" L

1, for o-v <- a,,

This formula can be rewritten in more convenient form. We note that the mean value of

the stress equals

E(X) =1_(aL + au)

whereas the variance of the stress equals

bbr(X) =l _ (o-u- o-L)"

From these two equations we first express the denominator in Eq. (17)

o-u - O-L = x/12Var(E)

as well as the lowest possible value the stress can take

2E(E)- _]12Yar(E)
o-L=

2

= E(Z)- 43Vat(Z)

Let

(18)

(19)

(20)

(21)

a L _<o- < au (22)

then, in accordance with Eq. (17), we have

R = a_ - E(X) - 43Vat(X)
243Var(E ) (23)

By dividing both the numerator and the denominator by the mean stress E(E), and

introducing the coefficient of variation of the actual stress
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we get, instead of Eq. (23)

vz - (24)
E(X)

R = s_ - 1 - _v z
2_vx (25)

As is seen reliability is directly expressed in terms of the central safety factor Sl and the

coefficient of variation of the involved random variable vz Thus, the reliability methods

allow to rigorously, rather than arbitrarily introduce the safety factors. The safety factor

sl is expressed from Eq. (25) as follows

s, = 1+ _t-_ (1 + 2R) (26)

Maximum value of the safety factor is achieved when the reliability tends to unity from

below

sl._,_ _ 34r3vz + 1 (27)

For example, for coefficient of variation 0.05 the safety factor assumes the value 1.26; for

the coefficient of variation 0.1 the safety factor equals 1.52; for coefficient of variation

0.15 it takes a value 1.78 etc. We conclude that with greater variation of the involved

random variable, the safety factor must be increased. This qualitative conclusion is in

line with our anticipation. Yet, it is seen that the reliability context allows one to make

quantitative judgements in terms of the required reliability and the coefficient of

variability.
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4. Case 2: Stress Has an Exponential Probability Density, Yield

Stress Is Deterministic

Consider now that the stress has an exponential probability density

=I0, for or<0
fs(cr) Laexp(-ao'), for cr >_0

The corresponding probability distribution function reads

KE(o') = Pr ob(E _ Cry) = [1 - exp(-ao')]U(o-)

(28)

(29)

where U(cr) is the unit step function; it equals unity for positive 7 and vanishes otherwise.

The parameter a is reciprocal to mean value of stress

1
E(Z) = -- (30)

a

Also, since parameter a is the only free parameter in the density (28) all probabilistic

moments depend solely upon

follows:

it. Thus, variance also is expressible in terms of a, as

1
Var(E) = ---v (31)

a _

Since the coefficient of variation

Vx/-_E ) 1/a 1 (32)

- E(Z) 1/a

is unity, or 10tY/o, we must anticipate high levels of safety factor, in order to ensure the

high level of required reliability. The latter equals, in view of Eq (19)

(33)
R = Prob(Y_ _<ay)

= [1 - exp(-atry)]U(cry)

We first express a from Eq. (30) as
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a = 1/E(Y,)

and substitute it into Eq. (33), to arrive at

(34)

(35)

In view of the central safety factor sl, Eq. (35) is rewritten as

R = [1- exp(- s)]U(ay) (36)

As is seen, a direct relationship is being established between the safety factor and the

reliability. Once the required reliability is specified the associated safety factor equals

1
s = In-- (37)

1-R

For example, reliability of 0.9 leads to the safety factor 2.3; the reliability of 0.95 results

in safety 3 etc. Such high values, as indicated above stem from the fact that the stress

exponential probability density is associated with high, namely 100% variability. It is

immediately seen, that one of the reasons for the high variations in this particular case is

the fact that the stress can take any value on the positive axis.

m Case 3: Stress Has a Rayleigh Probability Density, Yield

Stress is Deterministic

Consider now the case in which the stress is characterized by a Rayleigh

probability density:

0, for o-<0

f_(a) = _ a a _
for a >_O

(38)
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Theapproximateprobabilitydistributionfunctionis

Fz(cr ) = Prob(E _<cr) = Ifz(a)da = 1 - exp - U(o-) (39)

The reliability evaluation reads:

R = Prob(Y. _<Cry) = F_(Cry) (40)

Again, the reliability equals the probability distribution function of the stress evaluated at

the level of the yieM stress. Hence, in view of Eq (39)

[ I llO"v
R = 1 - exp - U(Cry) (41)

We would like now to express parameter b in Eqs. (38) and (39) through the probabilistic

characterization of the stress:

647
E(Z) = Iof__(cr)dcr - _- _ 1.25b

--o_3

(42)

_r(Z) = j'(cr - E(Z)):L(a)da

4-_b2- _ 0.43b:
2

(43)

We express b from Eq. (42)

b _ E(Z) _ 0.8E(E) (44)
1.25

and substitute it into Eq. (41) to yield

cry U(o,.)
2[0.8E(E)] z

0"78125°'Y2 l}U(cry)[E(E)]2

(45)
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We take into account the definition of the central safety factor to get

R = [1 - exp(-0.78125sl 2)]U(cry)

This formula allows to express the safety factor by the reliability

Thus, the reliability R

(46)

U 1
(47)s _ 1.13o/1n

V 1-R

= 0.9 yields in central safety factor 1.71, the reliability of 0.95

results in safety factor 1.96. The required reliability of 0.99 is associated with safety

factor 2.42 etc. Again, reason for these values is the high coefficient of variation. Indeed,

Eqs. (42) and (43) suggest that the coefficient of variation equals:

vs. -_ _ xf0-_43b2 - 0.52 (48)
E(E) 1.25b

Although this is a smaller variability than in the case of the stress with exponential

probability density, still, hopefully, 52% variation is seldom encountered in practice.

6. Case 4: Stress Has a Normal Probability Density, Yield Stress

is Deterministic

We consider now the case in which the stress is characterized by a normal

probability density

[ _f_ (o-) - ._ exp - --.---7--. oo <cr <Qo (49)

The distribution function reads
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I 1<,-°_%,
1

_ exp -

F_(cr) = b 24_-_ _= 2\--ff--) J (50a)

+(_1

• (x)- _ =

where a is the mean stress, and b is the mean square deviation,

E(E) = a (51)

Var(E) = b 2 (52)

The reliability equals

o:,,= =°(°';°) (53)

or with Eq. (50) taken into account

k, 4Vat(Z) J

Dividing both the numerator and the denominator by E(E) we rewrite Eq. (53) as follows:

R =*( sl -11 (55)
\vz j

where s_ is the central safety factor, vz is the coefficient variation of the stress. Eq. (54)

allows again to express the safety factor via the reliability

s, = 1 + vz_-' (R) (56)

where _-_ (R) is a function that is inverse to _(R).

We note the following values of the inverse normal probability function (Benjamin and

Cornell, 1970, p. 655)
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4)-1(0.9) = 4)-1(1-10 -1) = 1.28

4)-1(0.99) = 4)-1(1-10 -z) = 2.32

4)-1(0.999) = 4)-1(1 - 10-3) = 3.09

4)-1(0.9 999) = 4)-t(1 -10 4) = 3.72

4) 1(0.99 999) = 4)-1(1-10 5) = 4.27

4)-I(0.999 999) = 4) 1(1-10-6) = 4.75

4)-1(0.9 999 999) = 4)-1(1-10-7) = 5.20

4) 1(0.99 999 999) = 4)-_(1-10 -6 )-- 5.61

4)-I(0.999 999 999) = 4)-'(1-10 -9) = 6.00

4)-1(0.9 999 999 999)=4)-'(1-10 1°)=6.36

4) '(0.99 999 999 999)=4)-1(1-10-11)=6.71

Thus, the safety factor becomes, for the coefficient of variation equal 0.05, respectively

s 1 = 0.054)-1(0.9) = 1.064, for R = 1-10 -1

s 1 = 0.054)-1(0.99) = 1.116, for R = 1-10 -2

s 1=0.054)-1(0.999)=1.155, for R=I-10 -3

s1 = 0.054)-1(0.9 999) = 1.186, for R = 1-10 -4

(57)

s l = 0.054)-1(0.99 999) = 1.2135, for R = 1-10 -5

s I = 0.054)-_(0.999 999) = 1.2375, for R = 1-10 -6 (58)

s1=0.054) 1(0.9 999 999)=1.26, for R=I-10 -7

s I = 0.054)-1(0.99 999 999) = 1.2805, for R = 1-10 -6

s I =0.054)-1(0.999 999 999)=1.3, for R=I-10 -9

s 1 =0.054)-1(0.9 999 999 999)= 1.318, for R= 1-10 -1°

s_ =0.054)-1(0.99 999 999 999)=1.3355, for R=I-10 -11

As is een, there is direct relationship between the safety factor and required reliability.

One can suggest asymptotic relationship between the safety factor and reliability. One

observes from Eq. (57) that the knowledge of the coefficient of variation (the ratio
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between the standard deviation and the mean) and required reliability directly yields the

level of the required safety factor.

7. Case 5: Actual Stress Has a Log-Normal Probability Density,

Yield Stress is Deterministic

Consider now the case in which the actual stress Z is distributed log-normally, with

the following probability density function:

1 I (lncr-a_)2]2bz2
. , cr > 0 (59)

fz(cr)- obz 2,_exp

and vanishes otherwise. The mean value of the stress equals

E(E) exp(a_ , 5: _+_b z )

whereas the variance reads:

Var(E) = exp(2a z + bz 2)[exp(_ 2) - 1]

The reliability equals

R = Pr ob(E < cry ) = F_ (cry)

The probability distribution function for the log-normal variable E is

0 1 exp[ (lnt-a_ :t

We make a substitution

to obtain

In t - a z _
g

(60)

(61)

(62)

(63)

(64)
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In view of Eq.

111 O" -- _/;

b_

F_(cr) : £ 1- o °xp(-

(65), expression for the reliability

Central safety factor equals

S] --

cry _

(65)

(66)

1 2

E(E) exp(a z +_b z )

Knowing parameters a z and b E determines both the central safety

reliability.

On the other hand, if E(E) and

transformation from Eqs. (60) and (61). We substitute Eq. (67) into Eq. (66)to get

I ln cry-In E(E)-1 {_n[E2(E)+ Var (E)]- ln[E 2(Y.)]}]

Thus, the find formula can be rewritten as:

_ (lns_ - ½[In(1 + o_2)1]
R = @ _---_-

[ x]ln(l +t_ ) J
We are unaware of the other derivation of this expression.

(67)

factor and the

Var(E) are given, one needs the formula of

(68)

(69)
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8. Case 6: Actual Stress Has a Weibuii Probability Density,

Strength is Deterministic

Let us study the case of the probability of the distribution function stress

(70)

The reliability, therefore, is given by

(71)

According to Haldar and Mahadevan (2000) who do not deal with the material in this

section, but use the Weibull distribution, the mean value and the variance can be

expressed via a_ and bz analytically. In our setting their formulas read:
t

1 1 n-

a_ = E(Z)- 0.5772b_

(72)

Thus,

E(E) = a z + 0.5772b_

_2tr(Z) = --bz °
6

(73)

(74)

Reliability becomes:

= exp - exp . x]6Var(Y, cry.
R

2"/"

(75)
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or, dividing both numerator and denominator by E(Z) and recalling definition of the

central safety factor s t = cry/E(Z) and of the coefficient of variation of the actual stress

v_ = _/E(Z) we get

fR = exp - exp
(76)

This formula too apparently is given for the first time. It connects the reliability with the

central safety factor sl and the variability v_. Conversely, if the required reliability is

specified, one can directly determine the safety factor

s_= 1 - vzI0.781n(ln R)- 0.45 ] (77)

The following values are obtained for v_ = 0.05:

R = 0.9, s_ = 1.11

R = 0.95, s_ = 1.14

R = 0.99, s_ = 1.18

R = 0.999, s_ = 1.29

R=0.9 999, s_ =1.36

R=0.99 999, s_=1.45

(78)

For vz = 0.1 we get

R = 0.9, s_ = 1.22

R = 0.95, s_ = 1.28

R = 0.99, s_ = 1.36

R = 0.999, s_ = 1.58

R=0.9 999, s_=1.72

R=0.99 999, s_=1.90

(79)

NASA/CR---2001-211309 20



9. Conclusion

As is observed from this report the use of the safety factor is not contradictory to

the employment of the probabilistic methods. Moreover, in many cases the safety

factors can be directly expressed by the required reliability levels. However, there is a

major difference that must be emphasized: whereas the safety factors are allocated in

an ad hoc manner, the probabilistic approach offers a unified mathematical

framework. The establishment of the interrelation between the concepts opens an

avenue for rational of safety factors, based on reliability.

If there are several forms of failure then the allocation of safety factors should be

based on having the same reliability associated with each failure modes. This

immediately suggests, that by the probabilistic methods the existing overdesign or

underdesign can be eliminated.

This is done by calibration of the reliability levels with one of the safety factors

that is already accepted. Thus, via such an approach, the other failure modes' safety

factors can be established.

This is illustrated fig. 2, which shows that presently safety factor are assigned in

an ad hoc manner to each failure mode, but there is no interrelation between them.

Fig. 3 illustrates the consistent allocation of the safety factors can be performed.

The report No. 2 deals with the reverse case, namely when the actual stress is

deterministic, but the yield stress is random. Report No. 3 will discuss the general

case in which both the actual stress and the yield stress are treated as random

quantities with the attendant interrelationship between the reliability and safety

factors.
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I Safety factor "_ ICtSF

Safety factor .._2)rtSF

Fig. 2 Present Status: No Connection Between Safety Factors, Leading

to Overdesign or Underdesign
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f

R1 =R2=R

Fig. 3 Future Status: Equal Reliability Allocation May Connect Dafety
Factors
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Interrelation Between Safety Factors and Reliability: Part 2

Deterministic Actual Stress & Random Yield Stress

I. Elishakoff

Department of Mechanical Engineering

Florida Atlantic University

Boca Raton, FL 33432

In the previous report we studied the case in which the actual stress was treated as

a random variable, while the yield stress was considered as a deterministic quantity. In

this report we investigate the reverse case, namely, when the actual stress is deterministic,

while the yield stress is treated as a random variable. Various probability densities to

model the actual behavior of the structural element in question are considered.

Case 1: Yields Stress Has an Uniform Probability Density, Actual

Stress is Deterministic

Let the yield stress have an uniform probability density

I 1 for
= _,ry,_ - a_,L cry,LA, (,ry)

/
L0, otherwise

<ff<_,u

(1)

where ay, L is the lower possible level the yield stress may take; cry,v is the upper

possible level the yield stress may assume.

The probability distribution function of the yield stress reads
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(cry) --

The reliability equals

"0, for cry < O'y.L

O'y- O'y,L for O'y,L <: Gy ( Gy,U

O'y,U -- a y,L

1, for o-y,u _<Cry

R = Prob(E < Ev) = Prob(cr _<Ey)

= Pr ob(Ey > a) = 1- Prob(Ey _<o-)

Thus, in view Eq. (2), we get

(2)

R ___

(3)

1, for Cry < t:ry,L

(7
1 - cre'z for cry,z <_Cry <Cry, v (4)

O'y,U -- O'y,L

O, for O'y,U < O'y

Consider the case in which the yield stress belongs to the interval [_,L, Cry,u]. In this case

from Eq. (4) we have for the reliability

R - O'y,U -- O" (5)
O'v U -- O'y,L

We note that the mean yield stress equals

E(Y_y) = 1_-(O-y,L+ O'y,v ) (6)

whereas the variance of the yield stress reads

Var(Ev ) = 1. i_ (¢Yy,v - Cry,L)" (7)

We express upper level of the yield stress _,u as follows, in terms of the mean yield

stress ECZy) and variance of the yield stress Var(Zy) via Eqs. (6) and (7):
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O'y,U

2E(Zy) + 412Var(Zy)

2 (8)

= E(Y,y) + 4311br(Zv)

The denominator in Eq (5) is directly expressible by the variance as 243t'27r(_;y) in Eq.

(7). Thus, the reliability in Eq. (5) can be rewritten as

E(E )+ x/3Var(Z_.) -a
R=

" 2243tar(y)

We divide both the numerator and denominator by o-and express the ration

43_2zr(Y.y) _ 43I'27r(l_y) E(Y.y)

a a

3/-3Vvy S I

where

vz, = _/Var(Ey) / E(Zy)

is the coefficient of variation of the yield stress,

S1 = E(_,y) ] ly

is the central safety factor:

(9)

(10)

(11)

(12)

s_(1 + qrJv_, ) - 1

R = 2_v_s, (13)

Eq. (13) allows to express the central safety factor as a function of the reliability:

1
sl = (14)

1 + xf3vz (1- 2R)

This equation is remarkable for the required reliability R is directly connected with the

central safe(y factor sl. Thus, if the required reliability 0.9 is set, at the coefficient of
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variation of the yield stress v_ = 0.05 we get the level of safety factor equal 1.07; for R =
_y

0.99 we get s_ = 1.09; reliability level 0.999 corresponds to s_ = 1.095. At the greater

coefficient of variation, namely, that comprising 10% we get

s1=1.16, for R=0.9

s 1=1.20, for R--0.99

for R -- 0.999s 1 = 1.21,

When the variability constitutes 20%,

s_ = 1.38,

s_ = 1.51,

s_ = 1.53,

etc. yielding greater needed safety

reliability level is fixed.

Case 2: Yield Stress Has an

Actual Stress Is Deterministic

we obtain

for R=0.9

for R = 0.99

.]'or R = 0.999

factors

(15)

(16)

with greater variability, if the demanded

Exponential Probability Density,

Consider now the case in which Ey is variable with exponential probability density

but E is deterministic. Hence 5",takes only a single value o-with unity probability.

The probability density of Ey reads:

O, for ay<O (17)
fx, (Cry) = [a exp(-acry ), for Cry > 0

Here f__ is the probability density of the yield stress.

The probability distribution function of Y_yis defined as (Fig. 1)

Fx_ (cry) : Pr ob(]_y < cry) (18)
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i.e. as a probability that Ey will take values that are not in excess of any pre-selected value

we get

According to the definition of the probability distribution

G v

F_ (Cry) : Ifz (t)dt
.- ct3

(19)

F_ (or) = (20)
" " exp(-ao-y), for cry >_0

The parameter a is the reciprocal of the mathematical expectation

1
E(Ey) = - (21)

a

The reliability reads

R = Pr ob(Y_ _<Y.y) = Prob(tr _<Ey)
(22)

= Pr ob(Zy > or) = 1- Pr ob(Y> < or)

In the right side of the equation (20) we recognize that the quantity Prob(Ey<O) coincides

with Eq. (16) when instead of _, in Eq. (16) we substitute o-. In other words Prob(Ey_<Cr)

equals the probability distribution function of the yield stress evaluated at the level of the

Pr ob(Ey __rr) = F_, (o-)

actual stress (Fig. 2):

for or_>0

(23)

(24)

Thus, bearing in mind Eq. (18) we get

Prob(E__ o-)= {_'_ for ff__O• exp(-acr),
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f

j/
!

>

err

Fig. 1 Probability distribution of the yield stress

\\
\

R

(O'y)

Fig. 1 Reliability equals the function 1- F_y (ay) evaluated

at the actual stress
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Hence, the reliability in Eq. (20) becomes

R = 1 - Pr ob(_y _< (7-) = 1 - F_ (or)
-" (25)

= 1 - [1 - exp(-acr)]U(cr)

where U(o-) is the unit step function, i.e. U(cr) equals unity for positive cr and vanishes

otherwise. Taking into account the relationship (21) we can rewrite Eq. (20) in the

following manner

f l °1t  26,R= exp E(E:, )

We recognize the argument in Eq. (26) to be reciprocal of the safety factor. Due to Eq.

(5), of the report 1, three safety factors coincide in this case. Hence we denote them by a

single notation s. Thus we get the following relationship:

R = exp(- 1/ s)U(cr) (27)

As we see, reliability is intimately connected with the safety factor in the case under

consideration. In fact, the safety factor can be expressed directly from Eq. (22) for cr _ 0.

1 1
s-

In(R) ln(R ) (28)

In this particular case if the required reliability equals 0.9 the safety factor 1/1n(0.9) is

greater than 9!

The results in this case, although may seem to be very surprising, are quite

understandable. The variance of the yield stress

1
Var(£ ,.) = --

. a 2

The coefficient of variation in this case

(29)
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4Var(Zy) 1/ a 1 (30)
C.O.V. -- -- --

E(_,y) 1/a

equals unity; i.e. there is a large variation around the mean value of the yield stress;

hence, large safety factors are needed to achieve the required reliability levels.

Case 3: Strength Has a Rayleigh Probability Density, Actual

Stress Is Deterministic

The probability density of the strength is given by

I0, for Cry<O

¢
t_ ox,t_ j,for cr >0

with parameter b 2. The distribution function is

We also note that the mean strength is (Ref. 1, p75)

b,g 
E(Zy) = -_ ~ 1.25b

whereas the variance of the strength is (Ref 1, p75)

(4-_) b2 _ 0.43b 2
Var(Zy) - 2

Reliability is given by Eq. (3)

R = I- Pr ob(Zy _<o')= I- Fz, (cr)

(31)

(32)

(33)

(34)

(35)

Bearing in mind Eq. (27) we get:
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R = exp- U(cr)

Now, taking into account Eq. (33) we can substitute instead of b,

to get

(36)

b _ E(Zy) _ 0.8E(Ey) (37)
1.25

R = U(cr)exp{- o'2}2[0.8E(Y_y)] 2

or, in terms of the safety factor

(38)

E(Zv)
s - , (39)

o-

we obtain

0.78125}R = U(cr)exp sZ (40)

Safety factor s can be expressed from the reliability

s=_/0"78125- 0.8839

_In(1/R)
(41)

Let the reliability be set at R = 0.99. Eq. (40) yields safety factor 8.82. This result is again

understandable since the coefficient of variation in this case too is quite large:

sfVar(ZY) x/-O43bZ 0.52 (42)C.O.V. -- _ --

E(Zy) 125b
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Case 4: Various Factors of Safety in Buckling

It is best to start with an engineering example, first in the deterministic setting.

Consider an element that is simply supported at its ends. It is subjected to the

compressive load P at the ends, as well as the concentrate bending moment. M. The

section modulus of the cross section is denoted by S. Material's proportionality limit o'pl

as well as the yield stress O-y al'e given. We are interested in determining the safety factor

in 3 different regimes.

(a)
In this case we have

During Use of the Element Both M and P Increase Simultaneously

M_= P
o-_ - + -- (43)

S A

where M,,_x the maximum bending moment

where

A = cross sectional area.

M

kL
COS-

2

Mm&x B

(44)

k = _-I (45)

Since the relationship between the stresses and the load P is nonlinear, the safety

factor ns_ is determined as follows. We multiply the load by nsF SO as to achieve a level

of stress equal to the yield stress. Thus, the deterministic safety factor is derived from
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nsY nsrP
b--

er_, - S cos k'L A

2

(46)

where

- V EI

Consider now the probabilistic setting of the problem. Let o-:,

(47)

be a random variable E;,.

Then the central safety factor 3'1 is determined from the equation, in the manner,

analogous to the deterministic setting, except that _, is replaced by E(Xy), and nSF is

replaced by SI.

E(X)-
slM siP

ScoskvL A (48)
2

where

k v = ,/_-_-" (49)
• VEI

During Use of the Element the Axial Force Remains Constant,
Concentrated Moment Increases

Deterministic safety factor nSF is found from the equation:

ns_M P
Cry- id,+--AScos--

2

whereas the appropriate probabilistic central safety factor is determined

equation:

(50)

from the
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where

E(Ey) slM P- -- +-j (51)
S cos kL

2

f P
k = .I- (52)

V E1

(c) During Use of Element the Concentrated Moment Remains Constant,
Axial Force Increases

The deterministic safety factor nSF is determined from the equation

M nsFP

cr = kv L +--
• S cos " A

2

(53)

where

The probability analog of this equation reads:

E(Y_,,)=
M s,P

f
A

S cos ^Y_
2

(54)

(55)

where

For example, let M = 2 kN.m, P = 100 kN. The cross-sectional area is annular

with mean diameter D,, = 10 cm; thickness = 0.5 cm, L = 3 m. Then the deterministic

safety factors become, in three settings

Case (a): nSF = 1.85

Case (b): n_ = 3.37

(56)
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Case (c): ns_-= 2.52

In probabilistic setting, ifE(Ey) = 300 MPa, the same "central" safety factor is

obtained. Yet, straightforward application of the definition E(Z)/cr would be incorrect,

since the load P and the stress cr are not interrelated linearly.

In some cases, a simplified analysis can be performed: Consider the colunm that

is simultaneously subjected to the uniform distributed load q and axial compressive load

P. Then the exact analysis of the differential equation

EIw"+Pw = M_ (58)

where w = displacement, Mt = bending moment due to the transverse load,

aL o
M, = -'- e-x (59)

2 2

leads to the maximum bending moment

kL
1 - cos-

= 2 (60)
Mm_ kq kL

COS--

2

where k = _. The approximate relationship, as is well known from the applied

theory of elasticity reads

Mmax _ --
qL2/8

P (61)1----

Thus the stresses would read

qL 2/8 P
0-= -k

(62)

If both q and P increase simultaneously, the safety factor is found from equation
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nspq£- / 8 nspP
¢

Cry S(1 nsFP]P_r) A
(63)

The probabilistic "central" safety factor is found from the equation

s,qL_-/8 s,t'

E(Xy)- [ siP1 -t ASl-p.)
(64)

and not what would appear appropriate at the first glance:

S 1 _---

E(Xy)

qff'/8 P
+ (65)

The correct equation (64) leads to a quadratic equation for the central safety factor s_:

2 Sp 2 ( SPE(Y_y) SPA)qLZ+sE(E)=O (66)s' AT-s'_, _ - ---8-

Case 5: Yield Stress Has a Weibull Probability Density, Actual

Stress Is Deterministic

Consider now the case when the probability distribution function of the yield

stress reads

E (67)

where azy and bz, are positive parameters.

Reliability becomes
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B = Prob(cr <-2y) = Prob(Zy >--o-) = 1- Prob(Ey < or)

= 1-&,(o-)

(68)

thus yielding the reliability as follows:

exp -_ -
(69)

According to Haldar and Mahadevan (2000) (who do not deal with safety factors in the

present context, but discuss the Weibull distribution) the average and variance of Z,y are

directly expressible via a_, and b_.

l 1

4 ,JV-r(Xy)
(70)

azy = E(IL y)- 0.5772bray
(71)

Therefore,

E(Zy) = axy + 0.5772bx,

Zr'b2
Var(2y) = -_ s,

(72)

(73)

Substitution into Eq. (69) yields

I IE(_y ) -0.5772 46Var(Y-'Y) -crll

7g

R = exp - exp qovur,r_'_--(Y.y_,"

(74)

or

R = exp - exp -
_ _ 0.7846Var(_,)

(75)
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Dividing both the numerator and denominator in Eq.

definition of central safety factor s t = E(_,y)/t7

stress v_ = x/Var(Ey)/E(Ev) we get

R= exp[-exp( sl -0'45vs'0.78vz,s 1-11] (76)

If the reliability is fixed, one can find the appropriate safety factor:

1+ 0.45vz, '
sl = (77)

1- 0.78v_ VIn(In _-)

Since this formula yields safety factors that are less than unity, the use of the Weibull

distribution appears to be questionable in the case in question. This leads to an all-

important lesson: Direct randomization of the deterministic problem not always may be

advisible.

(75) by or, and recalling the

and variability coefficient of the yield

Conclusion

In this report we dealt with the case that is reverse to that discussed in report #1.

As Mischke (1970) notes, "there is disenchantment with the term factor of

safety." Shigley (1970) writes: "One of the unfortunate facts of life is that there are

almost no publications of data on the distribution of stress and strength."

We fell that the expert opinions on one hand, and the expert systems on the other,

along with the use of accumulated data available in engineering firms, will close the gap

between the present safety factor design and the probabilistic approach to its both

justification and the rational allocation.
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Interrelation Between Safety Factor and Reliability: Part 3

Both Actual Stress and Yield Stress Are Random

by
Isaac Elishakoff

Department of Mechanical Engineering

Florida Atlantic University

Boca Raton, FL 33432

In this part we consider most realistic case when both the yield stress Zj, and the

actual stress Y, are represented as random variables. The reliability reads:

R = Prob(Z_< Y,.) (1)

We denote by f_ (a, Cry) a joint probability density function of Z and Ey. Then Eq. (1)

becomes

R: <'
V<_Zy 0 La

or, alternatively,

ay )R= IIf_z, (tT, O'v)dOdCry=!f!f_ (_,_y)da a,, (3)
v_<vy

where the integration domain extends over the region in which Z and Ey to be

independent random variables. We find two formulas, stemming from Eqs (2) and (3),

respectively:

ot_

R = f[1 - F,- (a)]fz (o-)do- (4)
Cl
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r_

R = fF_(ay)A, (Cry)day
0

We will use either of Eqs. (4) or (5) based on convenience of computation.

Case 1- Both Actual Stress and Yield Stress Have

Probability Density

Let

where

f_ (O'y)- b_ 2_-_-exp - cry _ )

(5)

Normal

(6)

(7)

E(Y.) = mean value of the actual stress

b_ = _ = standard deviation of the actual stress

E(Ey) = mean value of the yield stress

bz, = _[Var(Zy ) = standard deviation of the yield stress

We introduce a new random variable

M = Ey - E (8)

which is called the safety margin. Since Eq. (8) expresses linearly E and 2y, the safety

margin, as a linear function of the normal variables, is also a normal variable with the

mean value

E(M) = E(Ey) - E(E) (9)
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andstandarddeviationbM found as follows

bM = _/bx 2 + by_,2 (10)

The reliability is then

R = Pr ob(2 < _"_y) 7 Pr ob(M > 0)

-i
o bM 427c _ bM ) J

To perform an integration in Eq. (11), we introduce new variable

t - E(M)
z-

(ll)

(12)

Hence

dt = bMdz

Also, when t = 0, the lower limit ofz equals

0 - E(M) _ E(Zy)- E(E)
Z-

bM _/b_ 2 + b_, 2

(13)

(14)

Hence,

R __

oo

1 Iexp(_ z 2 / 2)dz
E(2y)-E(X)

(15)

Thus, reliability in Eq. (11) becomes

4-£Y

E(ry)-E(V._)

-z / 2)dz

(16)
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This formula can be rewritten in several alternative ways. First of all we note that

E(E y ) - E(E) 1

_/bz" +b_ 2 vM
-y

(17)

where v_ is the coefficient of variation of the safety margin. Thus

R=I-_I- ,1-_--] (18)
\ _,_J

We also introduce coefficients of variation of the actual stress and the yield stress,

respectively,

b 2

vz - (19)
E(Z)

bx_

v_ - -Y (20)
-y E(Zy)

Then,

I_ bz": I_/bz 2 + bz, 2 = E(E) -_ E_) - E(E) vz _ + -- --

2 2
b_ E (Zy)

_y

Ez(Z, ,) E:(E) (21)

)_/I"E 2 2 2= E(Z + vzy s I

Hence, the reliability in Eq. (16) becomes

(
R = 1 - _[ s_ - 1

_fVE 2 --[--VVy 2S 1

As is seen the reliability R, the central safety factor sl and the variabilities

(22)

2

vz and vzy

are directly interrelated.
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Case 2: Actual Stress Has an Exponential Density, Yield Stress

Has a Normal Probability Density

For the titled case the probability densities of E and Ey read, respectively,

fx(cr) = aexp(-acr), for cr >_0

[ ii . b_ . ]2j (23)
-__1 o'_,-E(cr,,), for -m<_cr <_:_

fz, (_>,)- b__.d2srexp - ,

We note that

E(Z) = 1, Var(X) 1=--g-
O a-

E(X y) = b_ , Var(Y,y) = bx, 2

We evaluate reliability function as follows

Gv

Now, the inner integral equals:

Ory

0

= 1 - exp(-aO-y )

This results in the following evaluation:

Ory

t a exp(-a_y)dcr
0

(24)

(25)

(26)
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1 (Zy)" (1 )do

, lb_ _ Iexp - b_ " e-_'do."
_y 0 k

bx, .) b, _ exp • 2b_,2 y . ., + 2E(Z v)bz," - aZb

(27)

We introduce the following variables

Hence

cry - E(Z,, ) + abxy-

b_

_y

(28)

b_ dt = do',,

The expression for the reliability reads

R=,-.- _ - 2,/_

where

ao

II(t)dt

E(Xy )-abz.y :

bv v

(29)

(30)

t 2 1

leading to the final expression

b_, -exp (2E(Zy)a- 2b :- " " - a z_ 1 -

(31)

(32)
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This expression is rewritten as follows with notation:

bx_

_.v

Vv --

-, E(X,,)
(33)

we get

=exp- 2 '- P_i e_(x))j
(34)

Also, the expression in Eq. (32) becomes

E(Y.,,) - ab L
1-_- "

bry

E(Z._ ) 4Var(X y )

_]Var(Y.y ) E(Z)

= 1 __ (i) ( I 4VflY(Xv) E(Xy)) (35)

'oI' 1_ -- _ VE_ S1

Vv

Thus, all parameters in Eq. (32) are expressed in terms of the coefficients of variation and

the central safety factor s_

(36)

Consider an example. Let the yield stress has a normal probability density with mean

yield stress equal E(]_y)= 100 MPa. The variance equals _/'al'(Zy)= 100(MPa) 2, or

standard deviation equals bz, = 10 MPa, leading to the coefficient of variation to be
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VEy

bz, 10

E(Xv) 100
-0.1

The central safety factor is set at 2, i.e.

E(X.v)
s,- 2

E(E)

leading to the value of the mean stress to be equal

1=- × 100 = 50
E(Z)= E(Zy) 2

/VIPa

(37)

(38)

(39)

loe.

a = 1 / E(E) = 1/ 50 (MPa) _

Calculations in accordance to the formula (36) yield the reliability R = 0.86194.

(40)

Case 3: Actual Stress Has a Normal Probability

Strength Has an Exponential Probability Density

Density,

In this case we get

R = IrE(o- rE, (O'y)dO'y G

In new circumstances the probability densities read:

f_ (cr) -
x[27rVar(r.)

1•.fXj (O'y)-- E(Xy)exp E(Ey) " or,, >0

(41)

(42)

The reliability becomes:
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(43)

The find expression is as follows:

+ exp - E(Zy) _-5__ 1-* -
(44)

In terms of coefficients of variation and the central safety factor this expression becomes:

2 vz. 1 v
R=_ - +exp - - --;- 1-_ - -_

S] S1 " Vv S]"

(44)

Case 4: Both Actual Stress and Yield Stress Have Log-Normal

Probability Densities

Let the actual stress have the following density

1
fz(°')- . _--exp

orbz 42z
(lncr-a_)21

-" -, O'>0

2b z
(45)

where parameters az and b z are related to the mean value E(E) as follows:

'&')E(£) = exp(a_ + _: (46)

The variance of the stress equals

Var(E) = exp(2a z + b_ 2)[exp(bz 2) - 1] (47)

The probability density of the yield stress reads:

f )e t
1 (In o"v - az, _

fz, (cry) - cr,,b_, _ exp 2bz, 2 " •
O'y )0 (48)

The parameters az, and bz, are related in the following way with the mean yield stress:
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E(_,y) = exp(az, + _ bz: )

Variance Var(£y) is expressed as

Var(Ey) = exp(2a<, + b L 2)[exp(bz" __) _ 1]

The reliability reads

R = Pr ob(Z < Ey )

Yet, it is easier to express reliability as follows:

Introducing a new variable Z,

we get

Z
Z=m

£y

R = Pr ob(Z < 1)

which can be rewritten as follows:

g = Pr ob(ln Z < O)

We note that

lnZ = lnE-lnEy

But In E has a normal probability density with

E(ln E) = a z

Var(ln £) = br:

Likewise In Zy has a normal probability density with

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)
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E(ln Z v) = a¢

Var(ln E y ) = bx, 2

Hence, the difference In Z = In 2; - In 2y has a normal probability density with

E(ln Z) = a z - a_

Var(lnZ) = b. 2 +by:

We also conclude that Z is log-normal random variable with

E(Z) = exp[a_ - a_ + _-(b Z- + b_ )]

Var(Z) = exp[2(a_ - a_ ) + b -_ " _ ". z + bx._- ][exp(bx _ + b-L ") -1]

The reliability reads

a 2 -- av

R=_ "'

_]b ' 2r.- +b_
-y

The central safety factor reads

S 1 --

E(_,y) _ exp(a s +bx 2/2)

. b 2/2)E(E) exp(a_ + _,

Consider an example. Let

E(Y_) = 60,000 kPa

_v-a_= 20,000 kPa

E(Xy) = 100,000 kPa

4Var(X.v) = 10,000 kPa

We know that the central safety factor equals

S 1 --

E(E ) lO0,O00

E(E) 60,000
-- - 1.67

(59)

(6O)

(61)

(62)

(63)

(64)

(65)

(66)
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The reliability in this case turns out to be equal R = 0.9495.

Case 5: The Characteristic Safety Factor And the Design Safety

Factor

The characteristic safety factor reads

)"]y,0.05

7 - (67)
_095

where )-'_y,0.05 is 0.05 fractile of the probability distribution of yield stress, Z095 is 0.95

fractile of the probability distribution of stress.

When both random variables 2 and Zy are normal, then, according to Leporati [2]

E(Y.y )(1 - 1.645vz, ) 1-1.645vz,
y = - s 1 (68)

E(E)(1 + 1.645v_ ) 1 + 1.645v z

If, for example, both coefficients of variation are set at 0.05 then characteristic safety

factor equals

0.91775
7 - s I = 0.848s 1 (69)

1.08225

For the coefficients of variation set at 0.1 we get

?' = 0.316s I (70)

The design safety factor, according to Leporati [2] equals

* ]_v 000s

7" - " - (71)
_095

where 2y,0005 is the 0.005 fractile of the yield stress. It equals

1 - 2.576v_
--y

1 + 1.645v_
(72)
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Case 6: Asymptotic Analysis

Eq. (16) can be put in the following form:

p:= +(P) (73)

where/3 is referred to as a reliability index.

For fl > 5, the probability of failure can be written via an asymptotic formula:

P:_ f12 exp -
(74)

The reliability index itself is represented as follows, via Eq. (16)

E(£>,)-E(Z)

4Var(Zy ) + Var(Z)
(75)

Dividing both numerator and denominator by E(Y,) we get

S 1 -1

_] 2 2V E + S 1 Vv

(76)

From Eq. (76) we can find sl by solving the quadratic

2" , ' 2 (S 1 1)2/3 v_-+/3-s,-v_ = -
_y

(77)

s,-(fl" _ -1)+2s, +/3"v_--l=O (78)

We get

S 1

_J 21+ 1-(/3 v_'-l)(/3_'vs, 2 -1)

1 -- /3 2V'r'v2

1 + : : + -- V_

(79)
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As is easily seen, not for all coefficients of variability vz and v,- one can find the
_y

central factor of safety such that the demanded reliability index would be achieved. For

example for

(fl2v_- - 1)(flZv_, - - 1) > 1 (8O)

& gets complex values.

Solving the inequality (80) we get

f12 ,- r_2 2 2 2 2

_,p v_ vz, -v_ -v_ )>0 (81)

This implies, that the following inequality must be met

il 1
fl< ----4-+

Yy" Yv _
(82)

If the inequality (82) is violated, then the required reliability cannot be achieved by any

factor of safety.

From Eq. (76) we observe that when sl tends to infinity, the reliability index tends

to

1
fl --_ -- (83)

Y2

We can differentiate Eq (76) with respect to &:

2 2

t3fl = vz + vz" > 0 (84)
2 2 )3/2cOs_ (v_" + s I vz,

This implies that when increasing s_ from unity (when fl = 0) to infinity, fl varies from

zero to the value 1/ vz_.

If the variation of the stress is zero v z = 0 Eq. (79) yields
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1
S 1 --

1 - flv_

When we have a zero variability of the yield stress vz, = O, we get

S 1 : 1 -'['- ,_'E

(85)

(86)

Case 7: Actual Stress and Yield Stress Are Correlated

"In most cases the correlation between the actual stress and the yield stresses is

absent. Yet, when such a correlation exists, its expressing is ambiguous, and it is difficult

to express it numerically, "as Rzhanitzin (1981) notes.

Positive correlation between 2 and Z>, take place when the stronger elements take

more load. Partially this takes place for statically indeterminate systems, in which greater

strength is associated with greater stiffness, and hence with more loads. Safety margin

has a variance

M = Y,y - Z (87)

Var(M) = Var(Y.y ) - 2Cov(Ey, Y.) + Var(Y.)

where Cor(Zy, Y.) is the covariance between the actual stress and yield stress.

Then instead of Eq. (75) we get

p

E(2y)-E(2)

_/Var(Zy ) - 2Cov(Zy, Y-) + Var(Z)

Hence, in terms of central safety factor, we have

S l --I

_/V 2 2 2 2z, -2SlVzz, + sl vz

(88)

(89)

(9O)
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where vz_L is the correlation coefficient

(91)

One can express s 1 via fl Eq. (90) becomes

2 2 "_ "_

(1 - vz, -fl )s, - 2(1 - f12 v_''_ 2 )s I + (1 - fl'v__') = 0 (92)

yielding

fl2Vvy 2 _/ _ "_ 2 2 4)1- . + fl'(v G" -2v_r z "Jt-V, 2)--fl4(V 5, Vy_y --Vvv
"_' (93)

$1 = o 2

1- fl-v_,

When vrG vanishes Eq. (93) reduces to the case of uncorralated actual stress and yield

stress.

Case 8: Both Actual Stress and Yield Stress Follow the Pearson

Probability Densities

The random variable is said to have a Pearson probability density, if it has a form

fr (x) = Axle -_ for x > 0 (94)

where

b a+l

A - (95)
F(a + 1)

The mean value E(X) reads

a+l
E(X) - (96)

b

whereas the variance equals
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Var( X ) - a + 1 (97)
b z

The coefficient of variation equals

1 (98)
Vx - _a+l

It is interesting that the coefficient of variation does not depend upon b. It is seen that for

small values of a we get very high variability, whereas for small variability, of the order

of 0.1, greater values of a are needed (a _ 100).

Let the actual stress have the Pearson density

fz (o')= Altr _-' exp E-_) (99)

The yield stress also has the Pearson density

f_, (try) = A:tr_f-' exp E(Ey)
(lOO)

where

a_ fib
- A, - (101)

4 r(a)E _(y_)' " r(p)E p(y.)

where

1 1
tz=--,, fl- z (102)

VE VXy

The probability of failure becomes

p_ _ B_ (p, a) _ j_ (a, 8)
B(fl, a)

(103)

where
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B(fi, a) - r(g)r(fi)
r(a + #) (lO4)

is the Euler function of the first kind, or beta-function, whereas

8

&(fi, a) = Jt _-1(1- t) °-_at (105)
o

is the Euler function of the second kind, or incomplete beta-function. The quantity 8 in

Eq. (105) is defined as follows:

I 1VE,
fiE(Z) = l+Ts , (106)

a =/_(z) + aE(Z,) _:y-

The evaluation for the function Ja(a, fi) can be done by the numerical evaluation of

integrals in Eqs. (105) and (106).

Conclusion: Reliability & Safety Factor Can Peacefully Coexist

At this junction we ask the most important question: Are the safety factor and the

reliability concepts contradictory or they can coexist peacefully? The Fig. 1-12 depict the

dependence of the reliability in Eq. (22) vs the central safety factor Sl. As is seen, for

various variabilities of the stress and the yield stress one can assign both reliability and

the central safety factor. Indeed, Fig. 1 shows that of the coefficient of variability of the

stress yz=O.04 and the designer wants the safety factor to be set, say at 1.3, the demand

that the reliability is above 0.92 results in the choice of materials with '/r_y_<0.15. We

immediately observe that both the central safety factor and the reliability requirements

can be combined. Likewise, for _,_=0.05 (Fig. 2), the central safety factor s=l.2 is

associated with reliabilites grater than or equal to 0.93. Thus, one can also impose the
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reliability constraint.Analogousfeaturesarecharacteristicto figures 3-12.Thisleadsto

theconclusionthatthese2 conceptscancoexistpeacefully.

But this coexistencecannot be done without some adjustments.Reliability

conceptprovidestherigorousvaluesof the factors,for otherwise,i.e. without the general

context of reliability, the safety factor will remain as the factor of experience but still the

factor of theoretical ignorance. Adopting reliability as the main concept, the allocated

values of safety factor will naturally follow. In a sense probabilistic methods do not

constitute a "revolution" but rather a natural "evolution".
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